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$ Utrecht Biophysics Research Institute, University of Utrecht Princetanplein 5 ,  NL-3584 
CC Utrecht, The Netherlands 
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Abstract. The dynamics of learning in an unsupervised formulation ofthe Kohonen model 
has been shown to be equivalent to the dynamics of local order parameters in an attractor 
neural network with short-range Hebbian interactions and long-range anti-Hebbian interac- 
tions. In this paper we analyse the zero-temperature fixed-point equations of these systems. 
For the special case where the distribution of p-dimensional input vectors has rotational 
symmetry, the problem of finding the ground state is equivalent to finding the ground state 
of a system of p-dimensional Heisenberg spins with short-range ferromagnetic couplings 
and long-range anti-ferromagnetic couplings. 

1. Introduction 

In a previous paper [ l ]  we have shown that the dynamics of local order parameters 
in attractor neural networks with short-range Hebbian interactions and long-range 
anti-Hebbian interactions is equivalent to the dynamics of learning in an unsupervised 
formulation of the Kohonen [Z] model. Both processes are described by the same 
partial differential equation. This duality enables us to study the creation of topology 
conserving maps, using the mathematical tools and intuition developed in the field of 
attractor networks. We refer to [ l ]  for a more general introduction into the fields of 
attractor neural networks and learning. 

In this paper we will study in more detail the zero-temperature fixed-point equations 
of the above-mentioned dual models. We restrict ourselves to the case where the input 
vectors of the Kohonen model are drawn from a spherically symmetric distribution. 

ground state of a continuous system of p-dimensional Heisenberg spins with short-range 
ferromagnetic interactions, in combination with long-range anti-ferromagnetic interac- 
tions. In the attractor model the variable p represents the number of vectors stored, 
whereas in the Kohonen model p stands for the number of input channels. 

Since the Heisenberg spins are defined on a finite set D, and since we want to 
avoid all technical problems concerned with the system behaviour near the boundary 
JD,  we expand the Hamiltonian and the fixed-point equations into first order in the 
width of the short-range interaction. In this case the contribution of the boundary 
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region to the total energy can be neglected as far as the first order in U is concerned. 
Imposing periodic boundary conditions allows one easily to calculate the ground state 
for any p. However, the maps formed are found to be of too low dimension (they are 
not topology conserving, in contrast to the outcome of the numerical experiments). 
Calculating the ground state with free boundary conditions generally requires solving 
a set of coupled nonlinear partial differential equations. For p = 2  one finds the 
sine-Gordon equation. Here we focus on the case p = 3 and calculate solutions of the 
fixed-point equations with free boundary conditions; these solutions have a significantly 
lower energy than the ground state corresponding to periodic boundary conditions. 
Although we are unable to prove this solution to be the configuration with the lowest 
energy, it qualitatively describes the results of iterating the zero-temperature equations 
numerically. Finally appendix A contains an overview of the notation introduced and 
a brief description of the main variables. 

A C C Coolen and L G V M Lenders 

2. Sperical symmetry: Heiseoberg spins 

The dynamic equations describing the evolution of either interactions (Kohonen model) 
or local order parameters (attractor model) are [l]: 

(1) JrS = (6 tanh(pS.nO #Df - , 
( n O f ) ( x ) =  ID dyn(x,y)f(y)  

(@(f) )r -  I dSp(S)@(f). 

where #(x, 1 )  E RP, x E D c R" (bounded) and 

We will write spatial averages over D as 

The operator n is assumed to be symmetric and semipositive definite. Furthermore the 
second moment of the probability distribution p is assumed to be finite. If the 
temperature T =  p- '  is zero the (rescaled) Hamiltonian H of the attractor model is a 
Liapunov functional [ l ]  

.. H - -;!$n.n@+)G: (2) 

(Vxe D ) ( 3 y ~ ( x ) ~ [ - l ,  11): 

For the dual Kohonen model H is a Liapunov functional as soon as 

,(x) = (SY&))C 
which, if not true at f = 0, will certainly be true near equilibrium. Once the above 
condition is satisfied we find 

d 
- H[+l= - (a ,#.nO#)~ df  

= -((I&nO#I(1- yc ~ g n [ f . n O J l l ) ) ) ~ ~  SO. 
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We will now take for p a distribution with spherical symmetry: p(&)=p(161). The 
distribution p is normalized by setting 

(15,1)e= 1. 

In this case one can work out the average in (1): the zero-temperature equation is 
found to be 

Equation (3) shows that in equilibrium the fields are Heisenberg spins: I*(x)l= 1 
for all x. In terms of the formation of topology conserving maps this means that only 
representations of the direction of input vectors g can be formed; all information 
regarding 161 will be lost. This might have been expected since in the original Kohonen 
model [2] the same happens. 

Our problem, which is to find the lowest energy fixed-point solution of (3),  is 
equivalent to minimizing the Hamiltonian (2) for a field of Heisenberg spins S(x), 
since the energy minima of the Heisenberg system follow from 

which, in combination with the constraint equations C,[S] = 0, leads directly to 

( n  @S)(x) = A(x)S(x) S'(X) = 1. ( 5 )  

Equation (5) is equivalent to the fixed-point equation of (3). The multiplier field A(x) 
is found to be proportional to the energy density. Note that for the spherical spin 
model, where the local constraints S2(x) = 1 are replaced by the global constraint 
(S2)D = 1, one would have found a similar equation, where A would have been a 
constant. For positive semidefinite kernels n equation ( 5 )  can also be seen as the result 
of requiring S to be a critical point of the zero-temperature Liapunov functional F 
[ l ]  of the dynamics (3): 

F[S] E f ( S . f l @ s ) ~ - ( / n @ S I ) ~  

since the requirement S F  = 0 (for all SS with SSI,, =0) yields equation ( 5 ) .  From now 
on we will work with expression (5). 

In [ 11 we have shown that topology conserving maps can be expected to emerge 
if the operator n has the form 

n ( x ,  Y )  = n+(lx - Y I )  -JIDI-' 

0 < J  < J * =  1DI-l dxdyn+(lx-yl) (6 )  

where n ,  stands for a positive short-range interaction. In order to gain insight into 
which types of solutions of (5) are low-energy configurations, we have iterated equation 
(1) numerically for T = O , p = 3 ,  D=[-i. . i]  and I 1 2  

Since, by virtue of the above choice for p ( c ) ,  the normalization (15,,1) = 1 is built in, 
one must expect the vectors +(x) to he located on the surface of the unit sphere in 
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Figure 1. Projections of the equilibrium state $(x, m) (obtained by numerical iteration of 
the dynamics (1) )  onto the planes $,=O (left), (middle) and $,=O (risht), for 
J = O S  and rr ranging from 0.1 to 0.5. 
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Figure 2. Projections of the equilibrium state +(I, a) (obtained by numerical iteration of 
the dynamics ( I ) )  onto the planes ,1=0 (left), $,=O (middle) and $,=O (right), for 
J = 1.0 and v ranging from 0.1 to 0.5. 
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R3. As in [I], we have chosen (following Kohonen [2]) as a graphical representation 
of the equilibrium state the projections of @(x, OD) onto the planes +, = 0, $, = 0 and 
+3 = 0. Figures 1 and 2 show the equilibrium configurations reached after numerical 
iteration of (1) for J = 0.5 and J = 1.0 (respectively). The width U was varied from 0.1 
to 0.5 (Au = 0.1). These results show that, for small width U of the positive interaction, 
toplogy conserving maps are formed of the orientations of the input vectors 6. If, 
however, the width U is too large compared to the strength J of the negative long-range 
interaction, the number of degrees of freedom of the ground state is found to be 
reduced by one. This reduction can be expected to be related to the appearance of 
negative eigenvalues of the operator n, since for large U the condition J >  JL in (6) 
will be violated. 

A C C Coolen and L G V M Lenders 

3. Expansion in the width of the ferromagnetic interaction 

Since the numerical experiments showed topology conserving maps of the distribution 
p(J) to be formed for sufficiently small values of the range U of the ferromagnetic 
interaction n,, we proceed by making expansions in powers of U. From now on we 
will assume that the neurons are located on a finite ZD array: Dc W2. First we write 
n,  as 

n + ( z ) =  u - ’ f ( z / u )  1 dx f (1x1) =I dxx2f(lx/) = 1. (7) 

Using (7) we can write for the operation of the kernel n: 

(where we have used S.J,S=O). The above expression shows that, apart from a 
constant, the contribution of the boundary region J D  (of width U )  to the energy (2) 
is of order u3, in contrast to the surface energy which is of order U’. Therefore, as far 
as the first non-trivial order in U is concerned, we may forget about the boundary JD. 
Since away from the boundary region we have 
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the fixed-point equation (5) and the corresponding energy (2) become 

2599 

s + CAS - J(s)+ o ( & ~ )  = AS (8) 
(9) E = -L+. 2 :J(s)’,+i& x((vsA)2)D+o(&2) 

1 2  where &“TU and A = A ( x ) .  If J is non-zero there is a competition between the 
surface-tension term in (9) (which favours configurations with S = (S ) , )  and the term 

x, the two terms cannot be minimized simultaneously. From now on we will choose 
for D a unit square: D-[-f,i]’. 

We find that the calculation of the energy of the ground state becomes a trivial 
problem if we assume the solution to be periodic, or if we impose periodic boundary 
conditions. One can now expand the solution S in a discrete Fourier series: 

p:cpcgie-& I (-Kc!: fzs;au:. ca-f.,gu:a:i=-s *;!h (s)D =e). S-ce $(x) = : fa: a!! 

qX) 1 2, e2+= 2; = .Lk (10) 

E = - f + f @ j + 2 ~ ~ E  k21gk12+O(E2). ( 1 1 )  
k s Z 2  

LCZ2 

We now replace the local constraint S’(x) = 1 of the Heisenberg system by the global 
constraint (S’), of the spherical model, which is justified a posteriori if the ground 

coefficients this means 
state of the spherical mode! obeys the !oca! constraint as we!!: !n terms of the Fourier 

Using (12) we can rewrite the energy (11): 

E =- f+fJ+  1 ~ ~ ~ , / 2 ( 2 . r r 2 ~ k ’ - f J ) + O ( ~ 2 ) .  (13) 

Expression (13) allows us to identify the ground state S,(x) of the system with periodic 
boundary conditions (apart from the pathological case p = 1): 

keZ2,+0 

J<4?r2E: E,=-f+fJ+O(&’)  

S,(x) = e^ (a constant field). (14) 
For j >  4 . 2 ~  we have to distinguish the situations p 6 j ana p >  3. in the first case 
there are two distinct components (separated by energy barriers), in the second case 
there is one: 
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Clearly, the ground state configurations found for p = 3, assuming periodicity (circles), 
are different from the outcome of the numerical experiments described in section 2; 
apparently the true ground state of the system is not periodic. However, the ground 
state energy of the periodic system may serve as a guideline, since the non-periodic 
configurations that we will try to calculate must have an energy which is significantly 
lower than ( 1 5 ) .  

Let us now expand both the solution S of the fixed-point equation (8) and the 
multiplier field A in powers of E :  

A C C Coolen and L G V M Lenders 

s = s, + &?SI + O( E 2 7 )  s;=1 S, .S,=O 

A = A , + E ~ A ~ + o ( E ~ ~ ) .  

(t, ?J ai) in terms of which the fixed-point equation (8) and the energy ( 9 )  become 

s , ( ~ - A , ) + E A s , + ~ ~ s , ( ~  -A,)-  &*A~S,-  J((s&+ E n ( ~ , ) D )  = o ( & ~ ,  & I + ? )  (16) 

E = - ~ + ~ J ( S , ) ~ , + E ~ J ( S , ) , . ( S , ) D + ~ E  1 ( (VSoA)2 )D+O(~2 ,  E ' + ' ) .  (17) 

The trivial solution S,(x) = i (a constant field) was already discussed while periodic 
solutions were being studied; from now on we will assume So# (So)D. We must now 
specify the order of the long-range interaction parameter J. If J = j E p  ( p  > 0) the zeroth 
order of (16) immediately yields A,= 1, therefore 

A 

EAS,-e'A,S,-jEP((SO)D+E"(S,)D)=O(E2, E'"') .  

The case p > 1 is equivalent to retaining only the short-range interaction; therefore it 
is easy to calculate the ground state in lowest order in E :  

p > l :  S,, = ê  (a constant field) 

Eg=- f+O(& ' ,  E ~ ) .  

Clearly for E topology conserving maps will not be formed. The situation becomes 
more interesting as soon as J really enters the problem. Therefore we now consider 
0 6 p s 1 .  We can already derive from AS: = 0 that the equation AS, = 0 implies So = ê  
(the constant field), a case which we will not consider. For p E [0 ,  11 we must therefore 
(according to the fixed-point equation) require c =  1 or p = 1 or '1 + p  = 1 .  One can 
now work out the various possibilities for the exponents of E ;  the result is 

p = l :  s;= 1 ASo= AS,+.i(S,), (18) 

p < l :  s:=1 (SO)D = 0 AS,=AS,+c. (19) 

Equations ( 1 8 )  and (19) are to be solved for the fields S(x) and A(x) and the constant 
vector c simultaneously (the field h ( x )  can be eliminated by using S'(x) = 1 ) .  The 
energy corresponding to the solutions of ( 1 8 )  and (19) is 

E,=I = - i+iE(j(S,):+x ( ( V S d 2 ) ,  +higher orders 1 (20) 

(21) 

A 

E, , ,= - f+ f~1( (VS~*) ' )~+higherorders .  



Dual processes in neural network models: II 2601 

4. Free boundary conditions 

In this section we will construct solutions of (18) and (19) by writing So in polar 
coordinates (in order to build in the local constraints Sg(x) = 1). The fixed-point 
equations will then be transformed into nonlinear partial differential equations for the 
polar angles. For p = 2 only one field q5 remains: 

q4 = $(x) S, = (cos q5: sin q5) 

The result of working out ASo=ASo+c in terms of the field q5 is (after elimination of 
the field A )  

A + = , . (  -sin q5 ). 
cos $ 

Upon choosing a convenient basis in So-space, c =  c(-l,O), we find the sine-Gordon 
equation. Taking the constraints on (So) ,  into account, the p = 2 problem and the 
corresponding energies are found to be 

Aq5 = c sin q5 

p = l :  (COS q5), = -cj-‘ (sin q5), = 0 

p < l :  (cos q5)= = 0 (sin &+, = 0 

E,,= I = - 4 + f E ( j-’c2 + ((V q5)2)D) + . . . 
E,<,=-;+f&((Vq5)z)D+. .. 

Here we will concentrate on the case p = 3: 

So = (cos q5 sin e, sin q5 sin e, cos e) q5 = e = e(x). (22) 

(23) 
If we choose the z-axis in the direction of e, the result of working out (23) in terms 
of the polar angles is 

The equation to be solved is 

ASo  = ASo + c. 

sin eAe+cos e(ve)z+c+A COS e = o  
sinBA$+2cos!3(V&Vq5)=O (24) 
cos @AO=sin O(Vq5)’+sin B(VO)2+A sin 0 

(where c = \cl). Elimination of the field A gives 

sinOAq5+2cos8(V8.V$)=0 

AB-sin 0 cos B(Vq5)’+csin 0 = O .  (25) 

The constraints to be met by the solutions of (25) are (according to (18) and (19)) :  

p = l :  (26) 
p < l :  (27) 
The corresponding energies are found to be 

p = l :  E = -t+;E(J-1cZ+(sin2 e(v+)2+(ve)2)D)+. . . (28) 
p < l :  (29) 
Clearly for c = 0 the cases p = 1 and p < 1 are identical. 

(cos q5 sin e ) ,  = (sin q5 sin e), = 0 

(cos q5 sin e), =(sin $ sin e), = (cos e ) ,  =O. 

(COS e), = CY-’  

E = - f + ;+in2 e(v+)’+ (ve)’), + . . . . 
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In order to proceed we will have to make use of symmetries of the problem, since 
the fixed-point equations (25) are not easily solved directly. Inspired by the numerical 
results in [ l ]  we make an ansatz for the field 4: 

(30) 

The above ansatz implies V+ = r-’(-x2, x,) (where r-  1x0, which transforms the 
fixed-point equations (25) into 

ve. (-x2, x,) = o (31) 

(cos 4, sin 4) = lxl-’(x,, x2). 

AB - r -2  sin 0 cos B + c  sin 0 = O .  

The energy becomes 

p = l :  

p < l :  

We may now conclude from (31) that e =  9(r) and we find our problem of solving 
(31) reduced to solving an ordinary (nonlinear) differential equation: 

E = - f + f e ( i - ’ c 2 +  (r-2 sin2 e + (ve)2)D) +. . . (32) 

(33) E = - - t+fE(r-2 sin2 e +  ( v ~ ) ~ ) ,  +. . . 

r28”( r) + re’( r)  -sin e cos e + er2 sin 8 = 0. (34) 

Upon making the substitution O(r) = ~ / 2 + $ G ( u )  (U = log r )  equation (34) acquires 
the form 

G + s i n  G+2ce2”cos ( fG)=0 .  (35) 

If c # 0 we cannot solve this equation analytically. We will study the case c = 0 and 
try to analyse the effect of assuming c > 0 as a perturbation on the c = 0 solution. For 
c = O  equation (35) simply describes the motion of a pendulum; there are two types 
of solutions [3,4], which correspond to oscillatory motion and libration, respectively: 

G;(u)=Zarcsin(k sn[u+q,  k]) IkIS l  q e w  

G ; ( u )  = 2  arcsin(sn[k(u+q), k - ’ ] )  l k l a l  qEw 

01 

q E R  (36) 
T 

O:(r)=-+arcsin(k sn[log(r)+q, k]) ( k /  s 1 2 

T e;(r) =-+arcsin(sn[k log(r)+ kq, k - l ] )  l k l a l  q E w, 
2 

(37) 

Here the function sn[., .] is the elliptic function of Jacobi [5], defined by the relations 

sn[ U, k ]  = sin r$ U =I,” d + ( l -  k’ sin2 

The corresponding energies can now be calculated from (32) and (33): 

lklG1: 

Jk/*I :  

(r-2 sin’ e+(v8)2)D =(r-’(k2+ 1 - 2 k 2  sn’[log(r)+q, k ] ) ) ,  

(r-2 sin2 e+(ve)2)D = (r-’(k2+ 1 - 2  sn2[k log(r)+ kq, k - ’ ] ) ,  
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Since (r-2)D = m we can infer from the above relations, using sn2[ ] s 1, that for k f. 1 
the first non-trivial contribution to the energy diverges. The only energically acceptable 
solution is found for k = 1. Since sn[x, 11 = tanh(x) we find 

The value of the remaining parameter q is fixed by the constraint (SJD = 0: 

A(q)'(-) D =o. 

Since dA/dq < O  for all g and A(-m) = -A(m) = 1, the value of q is well defined and 
can be calculated numerically. One finds 

q = 1.023. 

The corresponding energy turns out to be 
E = - f + 4 ~  e-2'((r2+e-'q)-2)+.. , 

(40) 
Figure 3 shows the projections of the solution (39) (which is a mapping from the 
square D to the surface of the unit sphere in R') onto the planes S, = 0, S, = 0 and 
S, = S,, There is a qualitative agreement between configuration (39) and the numerical 
results obtained in section 2 (for small U ) .  For p < 1 the energy (40) is clearly below 
the ground state energy of the periodic fixed points, as calculated in section 3 (EB.PCr = 
-f+27r28+. . . ) ;forp = 1, however,theenergy(40) willnolongerbebelowthe periodic 
ground state energy as soon as j <  17.714 (where the constant solution Su = e* will have 
a lower energy). 

Finally we will study the consequences of allowing for c not to be zero (c<< 1). We 
will expand the solution of the full equation (35) in powers of c and take for the zeroth 
order the solution corresponding to (39): 

-?  +SA578 +. . . . 

G(u)  = GU(u) +cG,(u) +O(e2) 

Go( U )  = 2 arcsin(tanh(u + 4)). 

la1 Ibl IC1 

Figure 3. Projections of the fixed-point Solution (39) onto the planes ( a )  S, = 0, ( b )  S,= 0 
and ( e )  S, = S,. 
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Insertion into (35) gives a linear problem for GI : 

A C C Coolen and L G V M Lenders 

G ; +  G,(2 cosh-'(u+q) - l ) + 2  e2" cosh-l(u+q)=O. 

This equation can be cast into a more convenient form by the transformation 

u = - q - z  Gi(u)= @ ( z )  
In terms of these new variables we have 

where 

f ( z )  E -2 e -21 cosh-l(z) 

The solution of (41) can be calculated easily, since one now has to solve a first-order 
differential equation twice. The solution is 

@(z)=Acosh- '(z)+B(z cosh-l(z)+sinh(z)) 

+cosh-'(2) lo'ds cosh2(s) jo"dtcosh-l(t)f(t). (42) 

We can now substitute the function f into (42), perform some integrations and ignore 
all homogeneous terms resulting from these integrations (since they are accounted for 
by the first part of (42)). The final result is 

@ ( z )  = A cosh-'(z)+ B(r cosh-'(r)+sinh(z)) 

+ 2  e-2q( log(l+e-")(sinh(r)+z cosh-'(z)) 

+e-"-cosh-'(z) dss(tanh(s)-1) , 1: ) 
The energy shift resulting from the introduction of c # 0 can be written as 

(43) 

) T = - q - l o g ( r )  ) D +O(C')). 

Tedious but straightforward integration shows that the energy contributions of both 
the homogeneous and the inhomogeneous parts of (43) are finite. Therefore we can write 

- 2 z - ' P E  = c(AE, + BE2+ Ejnhom) +O(cz). (44) 

The constraint to be met can, in terms of @, be written as 

p < l :  (cosh-'[q+log(r)]@[-q -10g(r) l )~ = 0 

p = l :  (cosh-'[q+Iog(r)]b[-q -log(r)DD = J-'. 
Again both the homogeneous and the inhomogeneous parts of 4 give finite contribu- 
tions to the integrals appearing in the above averages. This results in a linear relation 
between the constants A and B( which allows for elimination of one of the two). One 
must now conclude from (44) that the energy shift for c # 0 is ill-defined: by varying 
the remaining constant A the energy shift can have any value. The explanation is that 
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the energy depends non-analytically on the fixed-point configurations So (which can 
also be inferred from the divergence of the k #  1 energy of the c = O  problem). 
Apparently, a perturbational approach to the problem of calculating So for c # 0 is 
inadequate. The physical meaning of restricting ourselves to c = 0 is that we assume 

=O. For p < 1 this does not seem unrealistic; however, for p = 1 one does not 
even know whether (SdD = O  for the ground state, so the assumption c = O  may be too 
crude. 

5. Discussion 

In this paper we have tried to calculate the zero-temperature fixed points of the dual 

spherical symmetry. Finding the ground state was shown to be equivalent to finding 
the ground state of a field of Heisenberg spins having short-range ferromagnetic 
interactions in combination with long-range anti-ferromagnetic interactions. We have 
shown, by solving the periodic case and by showing that non-periodic fixed points 
exist with lower energy, that in general the ground state will not be periodic. The 
consequence is that one may not impose periodic boundary conditions, which makes 
the problem mathematically more difficult to solve: one is faced with coupled nonlinear 
partial differential equations. 

In studying the problem with free boundary conditions we had to restrict our 
analysis in several ways. We expanded the short-range interaction in powers of the 
width and retained only the first non-trivial contribution. We studied only the case 
p = 3 and made a symmetry ansatz for the solution. The fixed point obtained was found 
to have an energy which is significantly below the energetically most favourable periodic 
state and qualitatively describes the result of iterating the evolution equations of the 
system numerically. 

The purpose of this paper was to show that the duality introduced in [ l]  can be 
used to study analytically the creation of topology conserving maps; it does not contain 
a full analysis of the physics contained in the corresponding equations. A next step 
might be to calculate the full phase diagram in terms of the parameters T, J and U. It 
might also be interesting to drop the restriction to spherically symmetric distributions 
of the input vectors. In the phase diagram one might expect to find transitions between 
phases with different intrinsic dimensions of the field +(x). 

introdncad in [I:, for the c a p  the &trihutlcx of iZpat .pr,tcrE, hzs 
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Appendix A. Notation 

This appendix contains an overview of the notation introduced and a brief description 
of the main variables. 
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p dynamic fields (xe  OCR"), bounded) 
spatial average 
integral operator n operating on function f (eigenvalues 
of n: A S Amax) 
positive short-range part of n (of width a) 
strength of background inhibition in n 
randomly drawn vectors (probability distribution: p )  
covariance matrix (eigenvalues: e,. E [0, cma,]) 
Liapunov function (free energy) 
Hamiltonian (fixed-point energy: E )  
field of Heisenberg spins (IS(x)l= 1 Vx) 

Expansion offeld equations 

E ' ? a 2  

J JE' ( p  > 0) scaling of background inhibition 
m, polar angle fields: 

expansion parameter: s- so+ E'S, + O ( E ~ " )  
4.. 

p=2 :S0=(cos+ , s in+)  
p = 3: So= (cos 4 sin 8, sin + sin 0, cos 0)  
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